Archive for the Spoon Category

Naiad progress 2019-12-02: online team services

Posted in Caffeine, consulting, Context, livecoding, Naiad, Smalltalk, Spoon, SqueakJS with tags , , , , , , on 2 December 2019 by Craig Latta
Naiad keeps livecoders informed of their teammates activity, and remembers all history.

topology established

Naiad is Caffeine‘s live module system. The goal is to support live versioning of classes and methods as they are edited, from connected teams of developers using Smalltalk or JavaScript IDEs from web browsers and native apps. Naiad keeps each developer informed of events meaningful to their teams and work. It’s comparable to a mashup of GitHub and Slack, and will interoperate with them as well.

The current Naiad prototype uses a relay network of NodeJS servers, each with Caffeine running in a Web Worker thread, and each serving a set of Caffeine-based client IDEs, in web browsers and native apps. The workers keep track of class and method versions, system checkpoints, and teams, using the relays to broadcast events to clients. Clients can request various services of the workers, like joining teams and making checkpoints from object memory snapshots.

These two clients are connected to the same relay server. The client on the left created a new team, by sending a message to the relay’s worker. The worker created the team, and told the relay to notify all of its peers (clients and relays). For now, clients respond by inspecting the new team.

I’ve just made the first system checkpoint, and broadcast the first team event (the creation of a team). Eventually, Naiad will support events for several services, including team chatting and screen-sharing, history management, and application deployment. I’m still eager to hear what events and services you think you would want in a livecoding notification system; please let me know! I expect the first public release of this work to be part of the second 2019 solstice release, on 22 December.

a Web UIs update

Posted in Caffeine, consulting, Context, livecoding, Naiad, Smalltalk, Spoon, SqueakJS with tags , , , , , , on 12 September 2019 by Craig Latta
livecoded Vue versions of the Smalltalk devtools

I’ve created working Vue versions of the traditional Smalltalk workspace and classes browser, livecoded in the web browser from the full Squeak IDE. These use the vue-draggable-resizable component as the basis of a window system, for dragging and resizing, and the vue-menu component for pop-up context menus. Third-party Vue components are loaded live from the network using http-vue-loader, avoiding all offline build steps (e.g., with webpack). Each Smalltalk devtool UI is expressed as a Vue “single-file component” and loaded live.

When enough of the Smalltalk devtools are available in this format, I can provide an initial Squeak object memory snapshot without the UI process and its supporting code, and without the relatively large bitmaps for the Display, drop-shadows, and fonts. This snapshot will be about two megabytes, down from the 35-megabyte original. (I also unloaded lots of other code in The Big Shakeout, including Etoys and Monticello). This will greatly improve Caffeine’s initial-page-load and snapshot times.

I’m also eager to develop other apps, like a proper GUI for the Chrome devtools, a better web browser tabs manager, and several end-user apps. Caffeine is becoming an interesting platform!

The Big Shake-Out

Posted in Appsterdam, Caffeine, consulting, Context, livecoding, Naiad, Smalltalk, Spoon, SqueakJS with tags , , , , , , , , , , , , , , , , , on 25 March 2019 by Craig Latta

Golden Retriever shaking off water

Some of those methods were there for a very long time!

I have adapted the minimization technique from the Naiad module system to Caffeine, my integration of OpenSmalltalk with the Web and Node platforms. Now, from a client Squeak, Pharo, or Cuis system in a web browser, I can make an EditHistory connection to a history server Smalltalk system, remove via garbage collection every method not run since the client was started, and imprint needed methods from the server as the client continues to run.

This is a garbage collection technique that I had previously called “Dissolve”, but I think the details are easier to explain with a different metaphor: “shaking” loose and removing everything which isn’t attached to the system through usage. This is a form of dynamic dead code elimination. The technique has two phases: “fusing” methods that must not be removed, and “shaking” loose all the others, removing them. This has a cascading effect, as the literals of removed methods without additional references are also removed, and further objects without references are removed as well.

After unfused methods and their associated objects are removed, the subsystems that provided them are effectively unloaded. For the system to use that functionality again, the methods must be reloaded. This is possible using the Naiad module system. By connecting a client system to a history server before shaking, the client can reload missing methods from the server as they are needed. For example, if the Morphic UI subsystem is shaken away, and the user then attempts to use the UI, the parts of Morphic needed by the user’s interactions are reloaded as needed.

This technology is useful for delineating subsystems that were created without regard to modularity, and creating deployable modules for them. It’s also useful for creating minimal systems suited to a specific purpose. You can fuse all the methods run by the unit tests for an app, and shake away all the others, while retaining the ability to debug and extend the system.

how it works

Whether a method is fused or not is part of the state of the virtual machine running the system, and is reset when the virtual machine starts. On system resumption, no method is fused. Each method can be told to fuse itself manually, through a primitive interface. Otherwise, methods are fused by the virtual machine as they are run. A class called Shaker knows which methods in a typical system are essential for operation. A Shaker instance can ensure those methods are fused, then shake the system.

Shaking itself invokes a variant of the normal OpenSmalltalk garbage collector. It replaces each unfused method with a special method which, when run, knows how to install the original method from a connected history server. In effect, all unfused methods are replaced by a single method.

Reinstallation of a method uses Naiad behavior history metadata, obtained by remote messaging with a history server, to reconstruct the method and put it in the proper method dictionary. The process creates any necessary prerequisites, such as classes and shared pools. No compiler is needed, because methods are constructed from previously-generated instructions; source code is merely an optional annotation.

the benefits of livecoding all the way down

I developed the virtual machine support for this feature with Bert Freudenberg‘s SqueakJS virtual machine, making heavy use of the JavaScript debugger in a web browser. I was struck by how much faster this sort of work is with a completely livecoded environment, rather than the C-based environment in which we usually develop the virtual machine. It’s similar to the power of Squeak’s virtual machine simulator. The tools, living in JavaScript, aren’t as powerful as Smalltalk-based ones, but they operate on the final Squeak virtual machine, rather than a simulation that runs much more slowly. Rebuilding the virtual machine amounts to reloading the web page in which it runs, and takes a few seconds, rather than the ordeal of a C-based build.

Much of the work here involved trial and error. How does Shaker know which methods are essential for system operation? I found out directly, by seeing where the system broke after being shaken. One can deduce some of the answer; for example, it’s obvious that the methods used by method contexts of current processes should be fused. Most of the essential methods yet to run, however, are not obvious. It was only because I had an interactive virtual machine development environment that it was feasible to restart the system and modify the virtual machine as many times as I needed (many, many times!), in a reasonable timeframe. Being able to tweak the virtual machine in real time from Smalltalk was also indispensable for debugging and feature development.

I want to thank Bert again for his work on SqueakJS. Also, many thanks to Dan Ingalls and the rest of the Lively team for creating the environment in which SqueakJS was originally built.

release schedule

I’m preparing Shaker for the next seasonal release of Caffeine, on the first 2019 solstice, 21 June 2019. I’ll make the virtual machine changes available for all OpenSmalltalk host platforms, in addition to the Web and Node platforms that Caffeine uses via the SqueakJS virtual machine. There may be alpha and beta releases before then.

If this technology sounds interesting to you, please let me know. I’m interested in use cases for testing. Thanks!

livecoding VueJS with Caffeine

Posted in Appsterdam, Caffeine, consulting, Context, Smalltalk, Spoon, SqueakJS with tags , , , , , , , on 30 August 2018 by Craig Latta

Vue component

Livecoding Vue.js with Caffeine: using a self-contained third-party Vue component compiled live from the web, no offline build step.

a tour of Caffeine

Posted in Appsterdam, consulting, Context, Smalltalk, Spoon, SqueakJS with tags , , , , , , , , , , , , , on 27 August 2018 by Craig Latta

https://player.vimeo.com/video/286872152

Here’s a tour of the slides from a Caffeine talk I’m going to give at ESUG 2018. I hope to see you there!

retrofitting Squeak Morphic for the web

Posted in Appsterdam, consulting, Context, Smalltalk, Spoon, SqueakJS with tags , , , , , , , , on 30 June 2017 by Craig Latta

Google ChromeScreenSnapz022

Last time, we explored a way to improve SqueakJS UI responsiveness by replacing Squeak Morphic entirely, with morphic.js. Now let’s look at a technique that reuses all the Squeak Morphic code we already have.

many worlds, many canvases

Traditionally, Squeak Morphic has a single “world” where morphs draw themselves. To be a coherent GUI, Morphic must provide all the top-level effects we’ve come to expect, like dragging windows and redrawing them in their new positions, and redrawing occluded windows when they are brought to the top. Today, this comes at an acceptable but noticeable cost. Until WebAssembly changes the equation again, we want to do all we can to shift UI work from Squeak Morphic to the HTML5 environment hosting it. This will also make the experience of using SqueakJS components more consistent with that of the other elements on the page.

Just as we created an HTML5 canvas for morphic.js to use in the last post, we can do so for individual morphs. This means we’ll need a new Canvas subclass, called HTML5FormCanvas:

Object
  ...
    Canvas
       FormCanvas
         HTML5FormCanvas

An HTML5FormCanvas draws onto a Form, as instances of its parent class do, but instead of flushing damage rectangle from the Form onto the Display, it flushes them to an HTML5 canvas. This is enabled by a primitive I added to the SqueakJS virtual machine, which reuses the normal canvas drawing code path.

Accompanying HTML5FormCanvas are new subclasses of PasteUpMorph and WorldState:

Object
  Morph
    ...
      PasteUpMorph
        HTML5PasteUpMorph

Object
  WorldState
    HTML5WorldState

HTML5PasteUpMorph provides a message interface for other Smalltalk objects to create HTML5 worlds, and access the HMTL5FormCanvas of each world and the underlying HTML5 canvas DOM element. An HTML5WorldState works on behalf of an HTML5PasteUpMorph, to establish event handlers for the HTML5 canvas (such as for keyboard and mouse events).

HTML5 Morphic in action

You don’t need to know all of that just to create an HTML5 Morphic world. You only need to know about HTML5PasteUpMorph. In particular, (HTML5PasteUpMorph class)>>newWorld. All of the traditional Squeak Morphic tools can use HTML5PasteUpMorph as a drop-in replacement for the usual PasteUpMorph class.

There are two examples of single-window Morphic worlds in the current Caffeine release, for a workspace and classes browser. I consider these two tools to be the “hello world” exercise for UI framework experimentation, since you can use them to implement all the other tools.

We get an immediate benefit from the web browser handling window movement and clipping for us, with opaque window moves rendering at 60+ frames per second. We can also interleave Squeak Morphic windows with other DOM elements on the page, which enables a more natural workflow when creating hybrid webpages. We can also style our Squeak Morphic windows with CSS, as we would any other DOM element, since as far as the web browser is concerned they are just HTML5 canvases. This makes effects like the rounded corners and window buttons trays that Caffeine uses very easy.

Now, we have flexible access to the traditional Morphic tools while we progress with adapting them to new worlds like morphic.js. What shall we build next?

Pharo comes to Caffeine and SqueakJS

Posted in Appsterdam, consulting, Context, GLASS, Naiad, Seaside, Smalltalk, Spoon, SqueakJS with tags , , , , , , , , , on 29 June 2017 by Craig Latta

Google ChromeScreenSnapz025

The Caffeine web livecoding project has added Pharo to the list of Smalltalk distributions it runs with SqueakJS. Bert Freudenberg and I spent some time getting SqueakJS to run Pharo at ESUG 2016 in Prague last summer, and it mostly worked. I think Bert got a lot further since then, because now there are just a few Pharo primitives that need implementing. All I’ve had to do so far this time is a minor fix to the input event loop and add the JavaScript bridge. The bridge now works from Pharo, and it’s the first time I’ve seen that.

Next steps include getting the Tether remote messaging protocol and Snowglobe app streaming working between Pharo and Squeak, all running in SqueakJS. Of course, I’d like to see fluid code-sharing of all kinds between Squeak, Pharo, and all the other Smalltalk implementations.

So, let the bugfixing begin! :)  You can run it at https://caffeine.js.org/pharo/. Please do get in touch if you find and fix things. Thanks!

%d bloggers like this: