Caffeine: live web debugging with SqueakJS

Posted in Appsterdam, consulting, Context, Naiad, Smalltalk, Spoon with tags , , , , , , , , , , , , , , , , , , , , on 26 October 2016 by Craig Latta

In February 2015 I spoke about Bert Freudenberg’s SqueakJS at FOSDEM. We were all intrigued with the potential of this system to change both Smalltalk and web programming. This year I’ve had some time to pursue that potential, and the results so far are pretty exciting.

SqueakJS is a Squeak virtual machine implemented with pure JavaScript. It runs in all the web browsers, and features a bi-directional JavaScript bridge. You can invoke JavaScript functions from Smalltalk code, and pass Smalltalk blocks for JavaScript code to invoke as callbacks. This lets Smalltalk programmers take advantage of the myriad JavaScript frameworks available, as well as the extensive APIs exposed by the browsers themselves.

The most familiar built-in browser behavior is for manipulating the structure of rendered webpages (the Document Object Model, or “DOM”). Equally important is behavior for manipulating the operation of the browser itself. The Chrome Debugging Protocol is a set of JavaScript APIs for controlling every aspect of a web browser, over a WebSocket. The developer tools built into the Chrome browser are implemented using these APIs, and it’s likely that other browsers will follow.

Using the JavaScript bridge and the Chrome Debugging Protocol, I have SqueakJS controlling the web browser running it. SqueakJS can get a list of all the browser’s tabs, and control the execution of each tab, just like the built-in devtools can. Now we can use Squeak’s user interface for debugging and building webpages. We can have persistent inspectors on particular DOM elements, rather than having only the REPL console of the built-in tools. We can build DOM structures as Smalltalk object graphs, complete with scripted behavior.

I am also integrating my previous WebDAV work, so that webpages are manifested as virtual filesystems, and can be manipulated with traditional text editors and other file-oriented tools. I call this a metaphorical filesystem. It extends the livecoding ability of Smalltalk and JavaScript to the proverbial “favorite text editor”.

This all comes together in a project I call Caffeine. had fun demoing it at ESUG 2016 in Prague. Video to come…

new website for Black Page Digital

Posted in Appsterdam, consulting, Context, GLASS, music, Naiad, Seaside, Smalltalk, Spoon with tags , , , , , , , , , , , , , , , , on 21 January 2016 by Craig Latta

I wrote a new website for Black Page Digital, my consultancy in Amsterdam and San Francisco. It features a running Squeak Smalltalk that you can use for livecoding. Please check it out, pass it on, and let me know what you think!pano

Smalltalk Reflections episode 8: garbage collection

Posted in Uncategorized on 20 January 2015 by Craig Latta

Episode 8 of Smalltalk Reflections is out. The topic is “garbage collection”.

SqueakJS WebSocket test passes; Flow, Lightning, Naiad to follow

Posted in Uncategorized on 18 January 2015 by Craig Latta


Well, this is perverse fun. :) The JavaScript WebSocket client API works from SqueakJS, so I guess I’ll write a WebSocket server to proxy peer-to-peer traffic between SqueakJS clients. This will let me implement the Flow external streaming “primitive” interface, using only the JavaScript bridge and no actual primitives. That will enable the Lightning remote messaging protocol, and then Naiad. I’ll run the server on and any other site that wants to be a Lightning node.


"Test the WebSocket API with an echo server."

| report websocket |

Transcript clear.

report := [:label :data |
   nextPutAll: label;
   print: data;

websocket := (
   (JS Object new)
      at: #newWebSocket
      put: (JS Function new: 'return new WebSocket("ws://");');

   at: #onopen
   put: [:event |
      report value: 'opened: ' value: event.
      websocket send: 'hey there'];
   at: #onclose
   put: [:event | report value: 'closed: ' value: event];
   at: #onmessage
   put: [:event |
      report value: 'data: ' value: event data.
      websocket close];
   at: #onerror
   put: [:event | report value: 'error: ' value: event data]


Context status 2015-01-16

Posted in Appsterdam, consulting, Context, Naiad, Smalltalk, Spoon with tags , , , , , , , on 16 January 2015 by Craig Latta

Hoi all–

Context is the umbrella project for Naiad (a distributed module system for all Smalltalks), Spoon (a minimal object memory that provides the starting point for Naiad), and Lightning (a remote-messaging framework which performs live serialization, used by Naiad for moving methods and other objects between systems). I intend for it to be a future release of Squeak, and a launcher and module system for all the other Smalltalks. I’m writing Context apps for cloud computing, web services, and distributed computation.

Commits b7676ba2cc and later of the Context git repo have:

  • Support for installable object memories as git submodule repos.
  • Submodule repos for memories for each of the known Smalltalk dialects, with Naiad support pre-loaded. I’m currently working on the submodules for Squeak and Pharo.
  • A web-browser-based console for launching and managing object memories.
  • A WebDAV-based virtual filesystem that enables Smalltalk to appear as a network-attached storage device, and mappings of the system to that filesystem that make Smalltalk accessible from external text editors (e.g., for editing code, managing processes and object memories).
  • Remote code and process browsers.

There’s a live discussion site and a mailing list. The newsgroup is gmane.comp.lang.smalltalk.squeak.context.

Thanks for checking it out!


Smalltalk Reflections episode 7: minimalism

Posted in Appsterdam, consulting, Context, Naiad, Smalltalk, Spoon with tags , , , , , on 14 January 2015 by Craig Latta

Episode 7 of Smalltalk Reflections is out. The topic is “minimalism”.

new Context active filesystem layout

Posted in Appsterdam, consulting, Context, Naiad, Smalltalk, Spoon with tags , , , , , , , , , , , , , on 22 December 2014 by Craig Latta

When you start the Context app, you start a webserver that provides a “console”. Viewed through a host web browser, the console describes what Context is, and enables control of the memories it knows about. The webserver also provides an active filesystem via WebDAV. This lets you interact with the console from a host terminal or text editor, in a manner reminiscent of a Unix procfs (content is generated live-on-read). Here’s a typical filesystem layout, and what you can do with it:


            the idle process
               ProcessorScheduler class>>idleProcess
               [] in ProcessorScheduler class>>resume
            hello world

The README.html file is what the console displays initially. It has a directory sibling memories, containing a subdirectory for each memory the console knows about. Each memory is named by its UUID. In the session directory, there are files which give information about a memory. The state file looks like this:

# This memory is running. You can send it one of the following
# commands: snapshot, suspend, or stop. To do so, write this file with
# the desired command as the first word after this comment. Subsequent
# comments give other information about this memory, like host
# resource usage and virtual machine plugins loaded.

(type command here)

# host resource usage
# bytes used:        437,598
# bytes available: 1,328,467

# virtual machine plugins loaded
# FlowPlugin

In this way, a file in the active filesystem provides access to a read-eval-print loop (REPL). The user gives input to the console by writing the file; the console gives feedback to the user (including documentation) by generating appropriate content when the file is read.

The performance file looks like this:

# instructions per second: 382,184,269
# messages per second:      12,355,810

This gives general profiling information about the virtual machine.

The subdirectories of the classes directory correspond to the memory’s classes. Each one has subdirectories for its methods, subclasses, and metaclass. The methods directory has a file for each method of the class. This provides the ability to browse and change source code in the memory from a host text editor.

The processes directory has a subdirectory for each running process in the memory. Each process directory has a subdirectory for each context of that process. Each context directory has a REPL file for the source code of the context’s method, and a subdirectory for the context’s variables (including the context itself), each of which is an inspector in the form of a REPL file. In this way, much of the functionality of the traditional Smalltalk debugger is accessible from a host text editor.

Finally, the workspaces directory has subdirectories for multiple “workspaces”, where one may evaluate expressions and interact with their result objects. Each workspace has a source file, another REPL file which contains instructions, the expression to evaluate, and, on the next read after write, the textual form of the result. In addition, in a result directory, is a file named for the textual form of the result, containing a REPL inspector for that result object.

These tools are useful both for newcomers to live object systems who are more comfortable with a text editor than the Smalltalk GUI, and for those accessing systems running in the cloud, for which traditional GUI access might be awkward or prohibitive.

%d bloggers like this: